Cryptography and Internet Security

 How mathematics makes it safe to shop on-lineJohn Lindsay Orr
University of Nebraska - Lincoln

http://www.math.unl.edu/~jorr/presentations

Goals

- Bad guys on the net: Why we need internet security
- Codes and ciphers: Julius Caesar and MI5
- The chicken and the egg: Asymmetric ciphers
- 525,600 minutes : Why asymmetric ciphers work
- The bad guys get smart: Man-in-the-middle attacks
- Digital signatures and certificate authorities
- Security ain't safety: Phishing

Bad Guys on the Net

Why we need internet security

Alice


```
惫 math.unl.edu - PuTTY
math> telnet www.math.unl.edu 80
Trying 129.93.180.31...
Connected to www.math.unl.edu
Escape character is '^1'
POST /~ jorr1/presentations/2007/ea/toaster/form.php HTTP/1.0
Content-Type: application/x-www-form-urlencoded
Content-Length: 62
name=Harry Potter&card=7890 5678 9877 1111&type=Gringotts Bank
HTTP/1.1 200 OK
Date: Mon, 26 Feb 2007 13:39:36 GMT
Server: Apache/2.0.52 (Centos)
X-Powered-By: PHP/4.3.9
Content-Length: 379
Connection: close
Content-Type: text/html
<html>
    <head>
        <title>Order Confirmation</title>
            <style>
                @import URL("style.css");
            </style>
        </head>
        <body>
            <h1>Order Confirmation</h1>
                Hi Harry Potter.<br>
                Your card number is 7890 5678 9877 111,
                It's a Gringotts Bank card.
                <p>
                    Your USB Toaster will be winging it's way to you soon...
        </body>
    </html>
Connection closed by foreign host
math>
```


Order Confirmation

Hi Harry Potter.
Your card number is 7890567898771111
It's a Gringotts Bank card.
Your USE Toaster will be winging it's way to you soon

Alice

ai C:IWINNTlsystem 32 lcmd.exe
Microsoft Windows XP [Uersion 5.1.2600]
(C) Copyright 1985-2001 Microsoft Corp.
$\mathrm{H}: \backslash>$ pathping ww-math.unl.edu
Tracing route to mobius unl.edu [129.93.180.31]
over a maximum of 30 hops:
0 fyb043000009. lancs.local [148.88.169.40]
1 148.88.168.1
2 cp10k-f y5i.rtr-lancs.ac.uk [148.88.255.93]
3 bar7i-cp10k.rtr.lancs.ac.uk [148.88.255.18]
4 194.81.46.1
5 so-1-3-0.warr-sbr1..ia.net [146.97.42.177]
6 so-0-2-0.read-sbr1-ja.net [146.97.33.109]
7 lond-scr3-ja_net [146.97.33.142]
8 po1-0.gn2-gw1-ja.net [146.97.35.98]
9 janet.rt2.lon.uk.geant2.net [62.40.124.197]
10 so-2-0-0.rt1.ams nil.geant2-net [62.40.112.137]
11 so-7-0-0.rt1.nyc.us.geant2.net [62.40.112.134]
12 198.32.11.50
13 so-0-0-0.ptr-wash.net.internet2.edu [64.57.28.11]
$14 \quad 64.57 .28 .12$
15 64.57.28.0
16 iplsng-chinng-abilene.ucaid.edu [198.32-8-77]
17 kscyng-iplsng-abilene.ucaid.edu [198.32.8.81]
$18 \mathrm{ks}-2-\mathrm{p} 0$.r.greatplains .net [164.113.238.194]
19 ks -4-t2.r.greatplains.net [164.113.238.206]
20 wsec6-fa-3-45.unl.edu [129.93.5.45]
Computing statistics for 500 seconds...
$\mathrm{H}: \backslash>=$

${ }_{8}^{8}$ math.unl.edu - PuTTY
math> telnet www.math.unl.edu 80
Trying 129.93.180.31...
Connected to www.math.unl.edu.
Escape character is '^1'
POST /~jorr1/presentations/2007/ea/toaster/form.php HTTP/1.0
Content-Type: application/x-www-form-urlencoded
Content-Length: 62
name=Harry Potter\&card=7890 56789877 1111\&type=Gringotts Bank
HTTP/1.1 200 OK
Date: Mon, 26 Feb 2007 13:39:36 GMT
Server: Apache/2.0.52 (Centos)
X-Powered-By: PHP/4.3.9
Content-Length: 379
Connection: close
Content-Type: text/html
$<$ html>
<head>
<title>Order Confirmation</title>
<style>
 @import URL("style.css");
 </style>
</head>
<body>
<h1>Order Confirmation</h1>
Hi Harry Potter.

Your card number is 789056789877 1111.

It's a Gringotts Bank card.
<p>
Your USB Toaster will be winging it's way to you soon...
</body>
</html>
Connection closed by foreign host.
math>

Codes and Ciphers
 Julius Caesar and MI5

...if he had anything confidential to say, he wrote it in cipher, that is, by so changing the order of the letters of the alphabet, that not a word could be made out. If anyone wishes to decipher these, and get at their meaning, he must substitute the fourth letter of the alphabet, namely D , for A, and so with the others.


```
惫 math.unl.edu - PuTTY
math> telnet www.math.unl.edu }8
Trying 129.93.180.31..
Connected to www.math.unl.edu
Escape character is '^1'
POST /~jorr1/presentations/2007/ea/toaster/form.php HTTP/1.0
Content-Type: application/x-www-form-urlencoded
Content-Length: 62
name=Harry Potterfcard=7890 5678 9877 1111&type=Gringotts Bank
HTTP/1.1 200 OK
Date: Mon, 26 Feb 2007 13:39:36 GMT
Server: Apache/2.0.52 (Centos)
x-Powered-By: PHP/4.3.9
Content-Length: 379
Connection: close
Content-Type: text/html
<html>
    <head>
        <title>Order Confirmation</title>
            <style>
                @import URL("style.css");
            </style>
        </head>
    <body>
                <h1>Order Confirmation</h1>
                Hi Harry Potter.<br>
                Your card number is 7890 5678 9877 1111.<br>
                It's a Gringotts Bank card.
                <p>
                Your USB Toaster will be winging it's way to you soon...
    </body>
</html>
Connection closed by foreign host.
math>
"... substitute the fourth letter of the alphabet, namely D, for A, and so with the others..."

\section*{Harry Potter}

\section*{}
```

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
0
3 4}4

```
A

\section*{A B C D E F G H I J K L M N O P Q R S T U V W X Y Z}
\begin{tabular}{llllllllllllllllllllllllll}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 & 21 & 22 & 23 & 24 & 25
\end{tabular}
\(\begin{array}{lllllllllllllllllllllllll}3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 & 21 & 22 & 23 & 24 & 25 & 0 & 1\end{array} 2\)
D
K

U
B
\(1234567891011121323441566189180.1112123456 \ldots\)


\section*{Modular Arithmetic}

\section*{\(a \equiv b \quad(\bmod m)\)}

\section*{\(a-b\) is a multiple of \(m\)}
\[
\begin{aligned}
& 10+3 \equiv 1(\bmod 12) \\
& \quad(10+3)-1=13-1=12=1 \times 12 \\
& 2-6 \equiv 8(\bmod 12)
\end{aligned}
\]
\[
(2-6)-8=-4-8=-12=-1 \times 12
\]


Caesar Cipher


Polyalphabetic Cipher

A cipher is a set of rules for encrypting data.
\[
E: a \square a+3(\bmod 26)
\]

A cipher is symmetric if knowledge of the information needed to encrypt also gives you knowledge of how to decrypt.


\section*{The Chicken and the Egg}

Symmetric and asymmetric ciphers



An asymmetric cipher has two parts:
A public key \(k_{\text {public }}\) encrypts
A private key \(k_{\text {private }}\) decrypts

Keep the private key secret - give the public key to anyone.



\section*{525,600 Minutes}

Why asymmetric ciphers work

So:
An asymmetric cipher, or public key cipher, is one where knowing the information needed to encrypt doesn't help you decrypt.

\section*{How is this possible?}

In fact, \(k_{\text {public }}\) and \(k_{\text {private }}\) are related, but...


\section*{RSA Public Key Cryptography}

Described by
Rob Rivest, Adi Shamir, and Leonard Adleman at MIT in 1977.

The idea is based on prime numbers...

A prime number is one whose only factors are 1 and itself.
e.g. \(2,3,5,7,11,13\) but not 4 , or 6

Theorem. Every number is the product of prime numbers.
e.g. \(1,386=2 \times 693=2 \times 3 \times 231=2 \times 3 \times 3 \times 77=2 \times 3 \times 3 \times 7 \times 11\)

Theorem. There is no biggest prime number.
If \(2,3,5,7, \ldots, P\) were all the prime numbers then what about
\[
1+2 \times 3 \times 5 \times 7 \times \ldots \times P
\]

Each of these numbers is the product of exactly two prime numbers. What are they?
\[
\begin{aligned}
6 & =2 \times 3 \\
10 & =2 \times 5 \\
21 & =3 \times 7 \\
221 & =13 \times 17 \\
713 & =23 \times 31 \\
456,989,977,669 & =611,953 \times 746,773 \\
& =P_{5000} \times P_{6000}
\end{aligned}
\]

The RSA public key consists of a number which is the product of two prime numbers. If you could figure out which two prime numbers you could find the private key.

"Ask a computer - computers are good at these kind of things..."

Look again at
\(456,989,977,669=611,953 \times 746,773\)

One way to factor \(456,989,977,669\) is to check all the numbers \(1,2,3, \ldots\) up to \(\sqrt{456,989,977,669} \approx 676,010\).

If a computer can do \(1,000,000\) tests in a second, then it can do this in just 676,010 \(\div 1,000,000=0.676\) seconds.

But what if \(N=P \times Q\) is 100 digits long?
Then
\[
10^{99} \leq N<10^{100}
\]
so
\[
10^{49} \leq \sqrt{N}<10^{50}
\]
and the computer can solve it in
\[
10^{50} \div 10^{6}=10^{44} \text { seconds. }
\]
\(10^{44}=100,000,000,000,000,000,000,000,000,000,000,000,000,000,000\) seconds

There are
and so there are


That's \(3,170,000,000,000,000,000,000,000,000,000,000,000\) years

Age of the universe \(=13,700,000,000\) years


Theorem. There is no biggest prime number.

And we have good algorithms for finding very big prime numbers (100's of digits)

But we have no methods of finding the prime factors of \(N=P Q\) that are qualitatively better than just checking all possibilities:
\[
T=C A^{d} \text { where } d=\# \text { digits in } N
\]

\section*{How does RSA work?}

Need to generate a public and a private key.
Step 1: Pick two (very) big prime numbers \(p\) and \(q\)
Step 2: Pick a number \(0<r<(p-1)(q-1)\)
Step 3: Find a number \(0<s<(p-1)(q-1)\) such that
\[
r s \equiv 1(\bmod (p-1)(q-1))
\]

Key Fact: Fog any pumper̂ơd \(m\) )
\(r s-1\) is a multiple of \((p-1)(q-1)\)

How does RSA work? (cont...)
Key Fact: For any number \(x\),
\[
x^{r s} \equiv x(\bmod p q)
\]

Let \(n=p q\)
Why does it work?
Public Key: \(n\) and \(\quad y \equiv x^{r}(\bmod p q)\)
Private Key: \(n\) and \&
\[
\Rightarrow y^{s} \equiv x^{r s} \equiv x(\bmod p q)
\]

Now, given \(x\)...
To encode \(x\) : Calculate \(y=\) tivernainder of \(x^{r} \div n\)
To decode \(y\) : Calculate the remainder of \(y^{s} \div n\)
\[
\begin{aligned}
& r s \equiv 1(\bmod (p-1)(q-1)) x^{r s} \equiv x(\bmod p q) \\
& r s-1=k(p-1)(q-1) \\
& r s=1+k(p-1)(q-1) \\
& x^{r s}=x^{1+k(p-1)(q-1)}=x \cdot\left(x^{(p-1)(q-1)}\right)^{k} \\
& \equiv x \cdot(1)^{k} \equiv x(\bmod p q) \\
& x^{p-1} \equiv 1(\bmod p) \quad \text { "Fermat's Little Theorem" } \\
& x^{q-1} \equiv 1(\bmod q)
\end{aligned}
\]
\(x^{(p-1)(q-1)} \equiv 1(\bmod p q)\) "Chinese Remainder Theorem"

\section*{The Bad Guys Get Smart} Man-in-the-middle attacks



\section*{Digital Signatures}


\section*{Digital Signatures}


Anyone can read the message...
...but only one person could have written the message...

Bob!



\section*{Security Ain't Safety \\ Phishing}


http://www.math.unl.edu/~jorr/presentations```

