Web-based Proficiency Exams and Mastery Learning in Mathematics

John Lindsay Orr University of Nebraska - Lincoln

http://www.math.unl.edu/~jorr/presentations

Answer the question:

What is an **Online Assessment Management System** and why use it?

- Definitions
- Examples
- Core Features
- Five practical problems

Who Am I and Why Am I Here?

What is an OAMS?

An Online Assessment Management System is web-based software to manage student assessment:

Student: Step through questions, answer questions, get grade report and feedback

Instructor: Write questions, assemble assignments, review grades

Varied question types and assignment types

Some Online Assessment Management Systems include:

- Maplesoft's MapleTA
- Horizon Wimba's EDU
- WebAssign from North Carolina State U
- WebWork from Rochester U
- Wiley's WileyPlus
- Prentice Hall's PHGradeAssist

Core Features

The core features of an OAMS are:

- Automated grading, immediate feedback
- Range of question types
- Range of assignment policies (quiz, homework, test, etc.)
- Web interface for students to browse questions
- Grade reporting for student and instructor (grade book)
- Tools to create new questions
- Administrative tools (user management)
- Interface with other web applications (CMS)

- 1. Students don't always remember all the material from previous courses.
- 2. Some students scrape through on partial credit who shouldn't.
- 3. I have some students in my class who shouldn't be there.
- 4. I know what I said but I don't know what they heard.
- 5. My students don't all study as hard as I'd like them to.

"Students don't always remember all the material from previous courses"

Practice more the first time

Learn it until you've mastered it

Review it until you're as good as you were (or better)

"Some students scrape through on partial credit who shouldn't"

Only award credit once they've mastered it

"I have some students in my class who shouldn't be there"

Placement testing

"I know what I said but I don't know what they heard"

"Just in time teaching" (<u>www.jitt.org</u>) Pre-class warm-ups – with feedback loop

"My students don't all study as hard as I'd like them to"

"No pay/no play" Increased time-on-task

Some Pedagogical Strategies

- 1. Mastery Learning
- 2. Just-in-time Learning
- 3. Adaptive Learning
- 4. Increased time-on-task

A False Choice

In addition to

Automated grading and Immediate feedback

an OAMS can provide

24/7 Access

and

Repeatable assignments

Repeatable Assignments

Each student on each attempt gets a different set of questions.

- 1. Permuted questions
- 2. Algorithmic questions

Algorithmic Questions

\$a = range(4, 9); \$k = decimal(2, rand(1, 2)); \$right = sum(x, 1, \$a, x(\$a-x)e^(-\$k x)); \$low = \$right - 3; \$high = \$right + 3;

Case Studies

Some ways we've used OAMS at Nebraska:

- 1. Gateway Exams
- 2. Placement Testing
- 3. Keller Plan
- 4. Homework

Gateway Exams

Precalculus, Calculus 1, Calculus 2

Require 80% fully correct for credit

Credit is 5% of course total

Daily retakes allowed for two weeks

Proctored exams and unlimited practice

Placement Testing

All incoming students take diagnostic test

Proctored from UNL or high school

Diagnostic assessment algorithm

(Maplesoft + MAA product)

Keller Plan

- Self-paced introductory psychology course
- Students progress through units by mastering tests
- Tests mix multiple choice and essay
- Both machine and human feedback available

Homework

Increased time-on-task

Publisher and home-grown content

Advantages/Disadvantages

Standardizes courses

- + Reduces grading work
- + Reduces grading budget
- + Enhances limited classroom time
- Administration
- Question creation

EDU at UNL

Began project in 1996 at UNL

Developed **Wiley Webtests** and then **eGrade 1.0** for John Wiley & Sons

Developed **EDU** for Brownstone Learning (now Horizon Wimba)

Became core of Maplesoft's MapleTA

EDU at UNL > Courses

Fall 1996	Spring 1997	Fall 1997	Spring 1998	Fall 1998	Spring 1999	Fall 1999	Spring 2000
Math 106	Math 106	Math 103	EdPs 860	Curr 359	Chem 110	Astr 103	Astr 103
	Math 107	Math 106	Hist 201	EdPs 859	EdPs 860	BioSci 230(X)	Bios 202
		Math 107	Math 102	Hist 201	Hist 171	BioSci 301	Chem 109
			Math 103	Math 102	Hist 201	BioSci 418/818	Chem 110
			Math 106	Math 103	Hist 220	Chem 109	EdPs 860
			Math 107	Math 106	Math 102	Chem 110	Geol 100
			Phys 211	Math 107	Math 103	EdPs 859	Geol 101
				Math 208	Math 106	Geol 101	Hist 120
				Phys 211	Math 107	Hist 100	Hist 171
				Phys 211H	Math 208	Hist 171	Hist 201
				Psyc 296	Phys 141	Hist 201	Lib 110
				Psyc 350	Phys 151	Math 102	Math 102
				Psyc 461	Phys 212H	Math 103	Math 103
					Psyc 296	Math 104	Math 104
					Psyc 461	Math 106	Math 106
						Math 106H	Math 107
						Math 107	Math 107H
						Math 203	Math 203
— 1						Math 208	Math 208
Fall	2003					Phys 141	Math 208H
						Phys 151	Phys 212
						Phys 212	Phys 212H
		-				Phys 212H	Pols 100
17	0 activ	e class	ses set	up		PolS 100	Psyc 181
						Psyc 181	Psyc 350
						Psyc 268	Psyc 463
						Psyc 350	Psyc 910
						Psyc 463	Stat 180
						Psyc 975	Stat 380

Thtr. Stud.

EDU at UNL > Disciplines

Accounting	Curr & Instruction	Psychology		
Ag. Marketing	Educational Psych.	School of Music		
Agro. & Hort.	Electrical Eng.	Veterinary Science		
Anthropology	Entomology	Lincoln High School		
Architecture	Family & Consumer Science			
Astronomy	Geography			
Biochemistry	Geosciences			
Biological Sciences	History			
Bio Systems Eng.	Industrial Eng.	Industrial Eng.		
Children, Family & Law	v Libraries			
Chemistry	Mathematics			
Civil Engineering	Modern Languag	ges		
Communication Studie	s Natural Resourc	Natural Resource Sciences		
Computer Science	Physics	Physics		
Const. Management	Political Science	Political Science		

EDU at UNL > Students

<u>Fall 2003</u>

 Student accounts:
 10,650

 Active (5+ sess.):
 7,075

<u>Spring 2004</u>

Student accounts: Active (5+ sess.):

8,863 5,310

EDU at UNL > Assignments

<u>Fall 2003</u>

Total assignments:277,148Daily average:2,500

<u>Spring 2004</u>

Total assignments:292,888Daily average:2,650

EDU at UNL > Value Added

<u>Fall 2003</u>

Total assignments:277,148GTA hourly rate:\$20GTA assignments/hour:10

Cost of human grading: \$554,296

OAMS for Maths

What's specific to math for online assessment?

- Grading formulas and expression on content; CAS
 - Powerful question types
- Mathematical **notation** in display and entry
- LaTeX or WYSIWG question creation
- Sophisticated algorithms (" x+-2 ")

A dog is running at 3ft/sec for 20 seconds. How far does it run?

Number	Units	

Mark all those statements that are true for the function f whose graph is depicted below.

f'' is negative at x = 0 f' is positive at x = -4 f is increasing at x = 0 f' is negative at x = -2 f' is decreasing at x = -2

Partial Grading Explained

Use the graph of $f^{\,\prime}$ shown below to determine the local extrema of f .

Find the local maxima of f .

Find the local minima of f.

[If there is more than one answer, separate them with semicolons. If there are no answers, enter "-10".]

Find the derivative of
$$\left(7\nu^3 - \nu\right)(\cos(5\nu))$$
.

(21v^2 - 1)cos(5v) + (

This question accepts numbers or formulas. Help | Change Entry Style | Preview

(-1/3)(3-6e^Ax)^A(1/2)

This question accepts numbers or formulas.Do not include a constant of integration in your answer. <u>Help | Change Entry Style | Preview</u>

Give an example of a function f(x) which is increasing on the interval [0,10]. Enter only the expression for the function, omitting "f(x) =". Click Plot to verify that your function increases.

This question accepts numbers or formulas. <u>Plot | Help | Change Math Entry Mode</u> Question:

This question concerns the integral of the function χ^{11} .

(a)

In the first part, use a geometric argument to decide whether $\int_{-\infty}^{7} x^{11} dx$ is:

- negative
- Zero
- opositive

(b)

In the second part, check your response by computing the integral.

(i) Evaluate $\int x^{11} dx$.

This question accepts numbers or formulas. Help | Change Entry Style | Preview

(ii)

Use the indefinite integral above to compute

$$\int_{-7}^{7} x^{11} dx$$

This question accepts numbers or formulas. <u>Help | Change Entry Style | Preview</u>

Questions

Find the closest point on the curve $f(x) = x^2 + 17$ to the point (-37, 0).

(Note: you must get all parts right to get credit for this question.)

(i) Find a formula for distance squared between the indicated point and an arbitrary point on the curve.

This question accepts numbers or formulas. Help | Change Entry Style | Preview

- (ii) Why can we find the minimum of the distance squared instead of just the distance?
 - In case the distance is negative, we will still get the correct answer because it is squared.
 - A larger d^2 means a larger d whenever d is positive.
 - O Distance squared is simpler than just the distance.
 - We want to avoid the square root when using distance.
- (iii)
- Let g(x) be the function that gives the distance squared. Find the derivative of g(x) .

This question accepts numbers or formulas. Help | Change Entry Style | Preview

- (iv) Find the critical number(s).
 - This question accepts numbers or formulas. Help | Change Entry Style | Preview

Questions

- (v)
 - How do we know without additional calculation that the critical point is a minimum?
 - It has to be a minimum otherwise this problem wouldn't work.
 - \bigcirc g(x) is continuous and increases as $x \to \infty$ and $x \to -\infty$.
 - \bigcirc g(x) is not continuous but increases as $x \to \infty$ and $x \to -\infty$.
 - g'(x) is continuous and is always increasing.

(vi)

What are the coordinates of the point on the curve closest to the given point?

This question accepts answers that are in a form like "(-1,3)" or "(3,7,3z)". The entries can be numbers or formulas. Help | Preview

Question 10: (1 point)

Identify the states in the diagram below.

Question 7: (1 point)

Assume that the equilibrium price of corn is \$180 as shown in the graph below.

(a) If a law is passed that forces the sales price of corn to be \$300, how many units will be sold?

(b) What will be the total revenue generated by the sale of corn after the price increase? Do not include the dollar sign (\$) in your response.

1-1	
1.41	
1-1	

Preview

(b)	
1	

Preview

This question accepts numbers and formulas with units. Help

MapleTA 2.51

MapleTA 3.0 (Beta)

EDU at UNL

http://www.math.unl.edu/~jorr/presentations